Kinetic Modeling and Photocatalytic Reactor Designed for Removal of Resorcinol in Water by Nano ZnFe2O4/Copper Slag as Catalyst: Using Full Factorial Design of Experiment

Authors

  • Fereshteh Motiee, Department of Chemistry, North Tehran Branch, Islamic Azad University, Postal Code: 1651153311 Tehran, I.R. IRAN
  • Hossein Malekhosseini Department of Chemistry, North Tehran Branch, Islamic Azad University, Postal Code: 1651153311 Tehran, I.R. IRAN
  • Kazem Mahanpoor Department of Chemistry, Arak Branch, Islamic Azad University, P.O Bax 38135-567 Arak, I.R. IRAN
  • Morteza Khosravi Department of Chemistry, North Tehran Branch, Islamic Azad University, Postal Code: 1651153311 Tehran, I.R. IRAN
Abstract:

In this research new catalyst prepared by supporting ZnFe2O4 on Copper Slag (CS) and characterization of this catalyst was done by using Scanning Electron Microscopy (SEM) image, Energy-Dispersive X-ray (EDX) spectroscopy, BET surface area, and X-Ray Diffraction (XRD) patterns. UV + H2O2 processes by ZnFe2O4/CS photocatalyst was used for the degradation of  Resorcinol as a pollutant in water. Circulate Packed Bed Reactor (CPBR) with a total volume of 1 liter and effective volume of 0.2 liters was used in this process. Design of Experiments (DoEs) was utilized and kinetics of the photocatalytic degradation process was modeled using full factorial design. The experiments were designed considering three variables at three-levels (including pH, the initial concentration of Resorcinol, and initial concentration of H2O2). The results showed that pH=5, the initial concentration of Resorcinol=50 ppm and H2O2 initial concentration=40 ppm had the highest Resorcinol degradation constant rate (k= 3.506 × 10-3).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Optimization of Photocatalytic Reduction of Cr(VI) in Water with Nano ZnO/Todorokite as a Catalyst: Using Taguchi Experimental Design

In the present work, the solid-state dispersion method has been used to stabilize ZnOon Todorokite (TD). ZnO/TD catalysts have been characterized by SEM and XRD. Optimum process conditions were determined for the removal of Cr(VI) from water using the Taguchi fractional design method. Four controllable factors containing pH, photocatalyst amount, irradiation intensity, and <em...

full text

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

Boron Removal by Electrocoagulation Using Full Factorial Design

Saline waters treatment has become increasingly important for drinking water supply in a greater part of the world. However, some serious limitations had recently been discovered during water treatment, among them the boron problem seems to have a critical meaning. According to the WHO regulations (2011), the boron concentration should be reduced to less than 2.4 mg/L for drinking water. The pu...

full text

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

simulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water

abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 3

pages  257- 266

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023